Simultaneous control of emission localization and two-photon absorption efficiency in dissymmetrical chromophores.
نویسندگان
چکیده
The aim of the present work is to demonstrate that combined spatial tuning of fluorescence and two-photon absorption (TPA) properties of multipolar chromophores can be achieved by introduction of slight electronic chemical dissymmetry. In that perspective, two model series of structurally related chromophores have been designed and investigated. One is based on rod-like quadrupolar chromophores bearing either two identical or different electron-donating (D) end groups and the other on three-branched octupolar chromophores built from a trigonal donating moiety bearing identical or different acceptor (A) peripheral groups. The influence of the electronic dissymmetry is investigated by combined experimental and theoretical studies of the linear and nonlinear optical properties of dissymmetrical chromophores compared to their symmetrical counterparts. In both types of systems (i.e., quadrupoles and octupoles), experiments and theory reveal that excitation is essentially delocalized and that excitation involves synchronized charge redistribution (i.e., concerted intramolecular charge transfer) between the different D and A moieties within the multipolar structure. In contrast, the emission stems only from a particular dipolar subunit bearing the strongest D or A moiety due to fast excitation localization after excitation, prior to emission. Hence, control of emission characteristics (polarization and emission spectrum), can be achieved, in addition to localization, by controlled introduction of electronic dissymmetry (i.e., replacement of one of the D or A end-groups by a slightly stronger D' or A' unit). Interestingly, slight dissymmetrical functionalization of both quadrupolar and octupolar compounds does not lead to significant loss in TPA responses and can even be beneficial due to the spectral broadening and peak position tuning that it allows. This study thus reveals an original molecular engineering route allowing TPA enhancement in multipolar structures, due to concerted core-to-periphery or periphery-to-core intramolecular charge redistribution upon excitation, while providing for control of emission localization. Such a route could be extended to more intricate (dendritic) and multipolar (3D) systems.
منابع مشابه
A Sensitive Technique for Two-Photon Absorption Measurements: Towards Higher Resolution Microscopy.
High repetition rate (HRR) lasers are essential in multiphoton microscopy for satisfactory signal to noise at low average powers. However, HRR lasers generate thermal distortions in samples even with the slightest single photon absorption. Using an optical chopper with HRR lasers ("blanking") we demonstrate a femtosecond z-scan setup that effectively eliminates thermal as well as small linear a...
متن کاملTwo-photon transitions in triazole based quadrupolar and octupolar chromophores: a TD-DFT investigation
Simultaneous absorption of two photons has gained increasing attention over recent years as it opens the way for improved and novel technological capabilities. In the search for adequate materials that combine large two-photon absorption (TPA) responses and attributes suitable for specific applications, the multibranch strategy has proved to be efficient. Such molecular engineering effort, base...
متن کاملEffects of (multi)branching of dipolar chromophores on photophysical properties and two-photon absorption.
To investigate the effect of branching on linear and nonlinear optical properties, a specific series of chromophores, epitome of (multi)branched dipoles, has been thoroughly explored by a combined theoretical and experimental approach. Excited-state structure calculations based on quantum-chemical techniques (time-dependent density functional theory) as well as a Frenkel exciton model nicely co...
متن کاملQuantum interference in organic solid.
We demonstrate high contrast quantum interference between one-photon and three-photon absorption pathways in an organic solid at room temperature. Illumination of a thin polymer film activated with fluorescing dendrimer chromophores of large three photon absorption cross section with two simultaneous femtosecond pulses at near-IR frequency omega and its third harmonic UV frequency 3omega result...
متن کاملEffi cient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network
Organic chromophores or crystals with large two-photon absorption (TPA) in the solid state are very much demanded for applications in optical limiting, frequency-upconversion lasing, laser pulse stabilization and reshaping etc. [ 1,2 ] In particular, effi cient two-photon excited fl uorescence emission or absorption that can be achieved at low optical intensity with the near infrared wavelength...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 114 9 شماره
صفحات -
تاریخ انتشار 2010